L-Type Calcium Channel C Terminus Autoregulates Transcription
نویسندگان
چکیده
منابع مشابه
L-type calcium channel C terminus autoregulates transcription.
Calcium homeostasis is critical for cardiac myocyte function and must be tightly regulated. The guiding hypothesis of this study is that a carboxyl-terminal cleavage product of the cardiac L-type calcium channel (Ca(V)1.2) autoregulates expression. First, we confirmed that the Ca(V)1.2 C terminus (CCt) is cleaved in murine cardiac myocytes from mature and developing ventricle. Overexpression of...
متن کاملThe L-Type Calcium Channel C Terminus Autoregulates Transcription
Calcium homeostasis is critical for cardiac myocyte function and must be tightly regulated. The guiding hypothesis of this study is that a carboxyl-terminal cleavage product of the cardiac L-type calcium channel (CaV1.2) autoregulates expression. First, we confirmed that the CaV1.2 C terminus (CCt) is cleaved in murine cardiac myocytes from mature and developing ventricle. Overexpression of ful...
متن کاملThe C Terminus of the L-Type Voltage-Gated Calcium Channel CaV1.2 Encodes a Transcription Factor
Voltage-gated calcium channels play a central role in regulating the electrical and biochemical properties of neurons and muscle cells. One of the ways in which calcium channels regulate long-lasting neuronal properties is by activating signaling pathways that control gene expression, but the mechanisms that link calcium channels to the nucleus are not well understood. We report that a C-termin...
متن کاملThe cardiac L-type calcium channel distal carboxy terminus autoinhibition is regulated by calcium.
The L-type calcium channel (LTCC) provides trigger Ca(2+) for sarcoplasmic reticulum Ca-release, and LTCC function is influenced by interacting proteins including the LTCC distal COOH terminus (DCT) and calmodulin. DCT is proteolytically cleaved and reassociates with the LTCC complex to regulate calcium channel function. DCT reduces LTCC barium current (I(Ba,L)) in reconstituted channel complex...
متن کاملInactivation of L-type calcium channel modulated by HCN2 channel.
Ca(2+) entry is delicately controlled by inactivation of L-type calcium channel (LTCC) composed of the pore-forming subunit alpha1C and the auxiliary subunits beta1 and alpha2delta. Calmodulin is the key protein that interacts with the COOH-terminal motifs of alpha1C, leading to the fine control of LTCC inactivation. In this study we show evidence that a hyperpolarization-activated cyclic nucle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Circulation Research
سال: 2009
ISSN: 0009-7330,1524-4571
DOI: 10.1161/circresaha.108.191387